Solving coupled tensor equations via higher order LSQR methods

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher order numerical methods for solving fractional differential equations

In this paper we introduce higher order numerical methods for solving fractional differential equations. We use two approaches to this problem. The first approach is based on a direct discretisation of the fractional differential operator: we obtain a numerical method for solving a linear fractional differential equation with order 0 < α < 1. The order of convergence of the numerical method is ...

متن کامل

New quasi-Newton methods via higher order tensor models

Many researches attempt to improve the efficiency of the usual quasi-Newton (QN) methods by accelerating the performance of the algorithm without causing more storage demand. They aim to employ more available information from the function values and gradient to approximate the curvature of the objective function. In this paper we derive a new QN method of this type using a fourth order tensor m...

متن کامل

‎A matrix LSQR algorithm for solving constrained linear operator equations

In this work‎, ‎an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$‎ ‎and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$‎ ‎where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$‎, ‎$mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$‎, ‎$ma...

متن کامل

Renormalization methods for higher order differential equations

We adapt methodology of statistical mechanics and quantum field theory to approximate solutions to an arbitrary order ordinary differential equation boundary value problem by a second-order equation. In particular, we study equations involving the derivative of a double-well potential such as u− u3 or − u + 2u3. Using momentum (Fourier) space variables we average over short length scales and de...

متن کامل

A Matrix Lsqr Algorithm for Solving Constrained Linear Operator Equations

In this work, an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation A(X) = B and the minimum Frobenius norm residual problem ||A(X)−B||F where X ∈ S := {X ∈ Rn×n | X = G(X)}, F is the linear operator from Rn×n onto Rr×s, G is a linear selfconjugate involution operator and B ∈ Rr×s. Numerical examples are given to verify the efficien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2020

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil2013419h